Waste Management/Handling CDM Project

13 May 2011

Satoshi Sugimoto JICA Expert Team

Contents

- 1. Waste Management and GHGs Emission
- 2. Wastewater Management and GHGs Emission
- 3. CDM Project Prototypes
- 4. Key Parameters in CH₄ Emission from Waste
- 5. Estimation of CH₄ Emission from Waste
- 6. Exercise: Estimation of CH₄ Emission from Solid Waste Disposal Site

1. Waste Management and GHGs Emission

3. CDM Project Prototypes

GHG emission source	Emission Reduction Methods		
		Flaring (Burning)	
Solid Waste/	CH ₄ Capture	Direct heat use	
Wastewater		Electricity generation	
	CH ₄ Emission Avoidance/Reduction by Aerobic Treatment of Organic Matter		

Including composting

Applicable GHGs emission reduction methods are basically same for solid waste and wastewater treatment.

3. CDM Project Prototypes

(2) Methane capture from anaerobic wastewater treatment (Type A)

waste

CH₄ emission from waste

■CH₄ is generated as a result of <u>degradation of organic materials</u> under <u>anaerobic conditions</u>.

The time required for the waste to decay (half-life) is different among the types of waste.

■ Part of CH₄ generated is oxidized in the cover of solid waste

disposal (CH₄ oxidation by methanotrophic micro-organisms in cover soils).

Key Parameter in CH₄ emission

Degradable organic materials (Degradable Organic Carbon: DOC) in waste.

Degree of anaerobic condition in waste (Methane Correction Factor: MCF).

The time required for the waste to decay (decay rate)

waste

(1) Content of DOC by types of waste

Type of Waste	DOC content (% on weight basis)		
	Wet waste	Dry waste	
Paper/cardboard	40	44	
Textiles	24	30	
Food waste	15	38	
Wood	43	50	
Garden and park waste	20	49	
Nappies	24	60	
Rubber and leather	39	47	
Inert waste (plastic, metal, glass)	-	-	

Content of organic waste is the key to amount of CH_4 emission.

Macto

(2) Degree of anaerobic condition (Methane Correction Factor)

Type of Waste disposal (Landfill)	Methane Correction Factor (MCF)
Managed – anaerobic	1.0
Managed – semi-aerobic	0.5
Unmanaged – deep (>5 m waste) and/or high water table	0.8
Unmanaged – Shallow (<5 m waste)	0.4
Uncategorised waste disposal	0.6

The intensity of methane emission is considerably influenced by the anaerobic condition of waste varying with types of final disposal practices.
The more anaerobic the condition of waste, the more CH₄ is generated.

(2) Degree of anaerobic condition (Methane Correction Factor)

Type of Waste disposal (Landfill)	Definition
Managed – anaerobic	The landfills which have controlled placement of waste (i.e. waste directed to specific deposition areas, a degree of control of scavenging and a degree of control of fires) and include at least one of the following: (i) cover material; (ii) mechanical compacting; or (iii) levelling of the waste.
Managed – semi-aerobic	The landfills which have controlled placement of waste and include all of the following structures for introducing air to waste layer: (i) permeable cover material; (ii) leachate drainage system; (iii) regulating pondage; and (iv) gas ventilation system.
Unmanaged – deep (>5 m waste) and/or high water table	All landfills not meeting the criteria of managed landfill s above and which have depths of greater than or equal to 5 meters and/or high water table at near ground level.
Unmanaged – Shallow (<5 m waste)	All landfills not meeting the criteria of managed landfills above and which have depths of less than 5 meters.

(3) Time required for the waste to decay (Decay rate of waste)

Type of Waste		Tropical Climate (MAT >20°C)		
		Dry (MAP<1,000mm)	Moist and Wet (MAP>=1,000mm)	
Slowly degrading waste	Paper/textiles waste	0.045	0.07	
	Wood/straw waste	0.025	0.035	
Moderately degrading waste	Other (non-food) organic putrescible/Garden and park waste	0.065	0.17	
Rapidly degrading waste	Food waste/sewerage sludge	0.085	0.4	

Decay rate of waste is given as a constant by types of waste based on the time required to decay.

5. Estimation of CH₄ from Waste Disposal

Site

Equation

$$BE_{CH4,SWDS,y} = \varphi \cdot (1-f) \cdot GWP_{CH4} \cdot (1-OX) \cdot \frac{16}{12} \cdot F \cdot DOC_{f} \cdot MCF \cdot \sum_{x=1}^{y} \sum_{j} W_{j,x} \cdot DOC_{j} \cdot e^{-k_{j} \cdot (y-x)} \cdot (1-e^{-k_{j}})$$

BE _{CH4, SWDS,y}	Methane emissions during the year y from waste disposal at the solid waste disposal site (SWDS) during the period from the start of waste disposal activity to the end of the year y (tCO ₂ e)
φ	Model correction factor to account for model uncertainties (0.9)
f	Fraction of methane captured at the SWDS and flared, combusted or used in another manner (in this case 0)
GWP _{CH4}	Global Warming Potential (GWP) of methane, valid for commitment (21)
OX	Oxidation factor (reflecting the amount of methane from SWDS that is oxidized in the soil or other material covering the waste (default value: 0.1)
F	Fraction of methane in the SWDS gas (volume fraction) (default value:0.5)
DOC _f	Fraction of degradable organic carbon (DOC) that can decompose (default value:0.5)

5. Estimation of CH₄ from Waste Disposal

Site

Equation

$$BE_{CH4,SWDS,y} = \varphi \cdot (1-f) \cdot GWP_{CH4} \cdot (1-OX) \cdot \frac{16}{12} \cdot F \cdot DOC_{f} \cdot MCF \cdot \sum_{x=1}^{y} \sum_{j} W_{j,x} \cdot DOC_{j} \cdot e^{-k_{j} \cdot (y-x)} \cdot (1-e^{-k_{j}})$$

MCF	Methane correction factor (determined by types of SWDS)
W _{j,x}	Amount of organic waste type j disposed at the SWDS in the year x (tons)
DOC _j	Fraction of degradable organic carbon (by weight) in the waste type j
k _j	Decay rate for the waste type j
j	Waste type category
e	The base of natural logarithm (Napier's number: 2.718)
Х	Year during the crediting period: x runs from the first year of the first crediting period $(x=1)$ to the year y for which avoided emissions are calculated $(x=y)$
Y	Year for which methane emissions are calculated.

Question Estimate the amount of CH_4 emission from SWDS in 1 (one) year under the following preconditions

(Preconditions)

Items	Preconditions		
The amount of waste disposed		100 tons/day	
Waste composition by types (% by	Paper/Cardboard	10%	
weight)	Textiles	0%	
	Food waste	30%	
	Wood	0%	
	Garden and park waste	20%	
	Inert waste	40%	
Type of Waste Disposal Landfill	Unmanaged -deep (>5m)	landfill	

$$\sum_{j=1}^{y} \sum_{i} W_{j,x} \cdot DOC_{j} \cdot e^{-k_{j} \cdot (y-x)} \cdot (1 - e^{-k_{j}})$$

Total amount of DOCs (Degradable Organic Carbons) decayed in the year

Amount of Waste A DOC content of A Decay rate of DOC A × × Decay rate of DOC B Amount of Waste B DOC content of B × × DOC content of C Decay rate of DOC C Amount of Waste C X × Decay rate of DOC D Amount of Waste D DOC content of D × ×

Step 1: Total amount of waste disposed per year

Amount of waste disposed (tons/day)	Amount of waste disposed (tons/year)	
100	36,500	

Step 2: Amount of waste disposed by type of waste

Amount of waste disposed (tons/year)	Waste composition by types (%)		Amount of Waste by types (tons/year)
36,500	Paper/cardboard	10	3,650
	Textiles	0	0
	Food Waste	30	10,950
	Wood	0	0
	Garden/park waste	20	7,300
	Inert waste	40	14,600

Step 3: Total amount of DOCs decayed in a year

Amount of Waste by types (tons/year)		Content of DOC (% on weight basis)	Decay rate in the first year	Total amount of DOCs in a year (tons/year)
Paper/cardboard	3,650	40	0.068	99.28
Textiles	0	24	0.068	0
Food waste	10,950	15	0.330	542.025
Wood	0	43	0.034	0
Garden/park waste	7,300	20	0.156	227.76
Inert waste	14,600	0	0	0
Total				869.065

